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 This appendix is a supplement to “Non-Parametric Unfolding of Binary Choice 

Data” (Political Analysis, 8:211-237, 2000).  Section A1 shows how the new normal 

vector is obtained from the singular value decomposition of the p by s matrix Ψ* 

constructed from the legislator coordinates.  Sections A2 and A3 report Monte-Carlo 

studies of the cutting plane procedure and legislative procedure, respectively, with voting 

error.  Finally, section A4 shows a Monte-Carlo study of the unfolding algorithm with 

missing data and voting error in two and three dimensions. 
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Appendix 

A1.  The sth singular vector, θs , is the Normal Vector, nj
#  

Recall that the singular value decomposition of the p by s matrix Ψ* is  

Ψ* = UΛΘ′ 

and that the current estimate of the cutting hyperplane is obtained by applying the Eckart-

Young theorem to Ψ* (Eckart and Young, 1936).  Namely, the best fitting hyperplane of 

rank s-1 through a set of points of rank s is found by performing a singular value 

decomposition of the matrix of points, UΛΘ′ , inserting a zero in place of the sth singular 

value on the diagonal of Λ, and remultiplying.  That is: 

V = UΛ#Θ′ 

where Λ# is an s by s diagonal matrix identical to Λ except for the replacement of the sth 

singular value by zero.  By construction, the p by s matrix V has rank s-1. 

 Let nj
# be the normal vector of the hyperplane defined by V such that nj

#’ nj
# =1 

and let θs be the sth singular vector of Θ .  It is easy to show that nj
# = θs (or its reflection, 

nj
# = -θs ).  To see this, note that by the definition of an orthogonal matrix: 

θs’Θ = (0, 0, 0, … , 1) 

That is, the inner product of θs with the other s-1 singular vectors in Θ is zero.  Hence: 

Λ#Θ′θs = 0s 

and 

Vθs  = UΛ#Θ′θs = 0p                              (A1) 

Where 0s and 0p are vectors of zeroes of length s and p respectively.  By construction, 

equation (A1) is simply a restatement of the definition of a plane.  The normal vector to 

the plane, V, is θs (or its reflection, -θs ).  Hence, nj
# = θs . 
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A2.  Monte-Carlo Studies of the Cutting Plane Procedure with Voting Error 

 Recovery of the Normal Vector 

 Similar to the experiments shown in Table 1, 100 legislators and 500 pairs of 

policy points were randomly drawn from a uniform distribution through the unit 

hypersphere.  The policy points were randomly drawn but in such a way so as to produce 

an average majority margin of about 67 percent.  Error was introduced by making the 

legislator choices probabilistic such that the further a legislator is from the cutting plane, 

the less likely the legislator will make a voting error.  Specifically, an indirect utility 

function (McFadden, 1976) was created for each legislator -- uijϑ + εijϑ – where uijϑ is the 

deterministic portion of the utility function for choice ϑ=Yea, Nay, and εijϑ is the 

stochastic portion.  The deterministic portion is assumed to be an exponential function of 

the negative of the squared distance from the legislator to the “y” and “n” alternatives and 

εijy and εijn were drawn from the Normal, Uniform, and Logit distributions, respectively.   

Table A1 shows that the procedure does a good job correctly classifying the true 

roll call choices and recovering the true normal vectors – especially at the 15 percent 

error level which is the approximate level of the error found in the U.S. Congressional 

roll call data.1  Finally, as one would expect, increasing the number of legislators 

increases the accuracy of the recovery. 

__________________ 
Table A1 about Here 

__________________ 
 

When error is present the cutting plane procedure converges very quickly.  An 

example is shown in Figure A1 that uses the same configuration of legislator ideal points 

as Figure 3.  The choices of 78 of the 435 legislators have been modified so that they are 
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“errors” – “N’s” on the “Y” side of the true cutting line and “Y’s” on the “N” side of the 

true cutting line.  The cutting plane procedure converges on the 30th iteration as shown in 

Panel D.  As shown by Panels B and C, in the error case the converged cutting plane may 

not be the one that maximizes classification – however, it will invariably be very close to 

the optimal cutting plane.  This is easily dealt with by simply storing the iteration record 

and using the normal vector corresponding to the best classification.  This works very 

well in practice. 

__________________ 
 Figure A1 about Here    
__________________ 

 
 Bootstrapped Standard Errors For the Elements of the Normal Vector 

 Given the legislator coordinates, X, and their votes on the jth roll call, tj , standard 

errors for the estimated normal vector, nj
* , can be obtained via a simple bootstrapping 

analysis.  In this context the rows of X and the corresponding elements in tj are sampled 

with replacement.  In a simple binary limited dependent variable context, let X# be the 

matrix X bordered by a column of ones, then 

tj = X#β + ε ,  

In a Probit or logit analysis, if the estimated β’s for the independent variables, 

β1 , β2 , … , βs , are normalized so that their sum of squares is equal to one, then they 

constitute a normal vector to a plane upon which the choice probabilities are exactly .5/.5 

and the intercept term, β0, is the cutting point, mj*.  In this context X is a fixed set of 

numbers.  However, in the roll call context, X is estimated from the roll calls.  

Consequently, the bootstrap standard errors reported below should be regarded as 
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measuring the stability of the cutting plane procedure.  In an LDV context where X is a 

matrix of independent variables, they are more akin to real standard errors. 

The bootstrap analysis is performed in the following manner.  First, the rows of X 

and the corresponding elements in tj are sampled with replacement to form 100 matrices 

(that is, the sampling is by legislator with replacement).  Second, the cutting plane 

procedure is applied to each of the 100 matrices.  Finally, the standard errors are obtained 

by computing the sum of squared differences between the actual normal vector from the 

original data, nj
* , and the 100 normal vectors from the bootstrap trials, dividing by 100 

and taking the square root.  

 The matrix X was constructed by randomly drawing legislators from a uniform 

distribution through the unit hypersphere.  Experiments were conducted using 50, 100, 

and 500 legislators, respectively.  The elements of the true normal vector were all set 

equal to 1
s

 so that the s dimensions would be equally salient and a cutting point was 

chosen along the normal vector to produce either a 50-50 margin or an 80-20 margin, 

respectively.  Voting error was generated in the same way as the experiments reported in 

Table A1, however, only normally distributed error was used in the experiments reported 

in Table A2.  The cutting plane procedure was applied to the matrix with error to obtain 

the estimated normal vector, nj
* , and then the standard errors were computed for this nj

* 

using the bootstrap method described in the previous paragraph.  This entire process was 

repeated 50 times producing 50s (50 times s) standard errors.  The mean and standard 

deviation of these 50s standard errors are reported for differing values of p (50, 100, 500), 

s (2, 3, 10), and margin (50-50, 80-20) in Table A2. 

__________________ 
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 Table A2 about Here    
__________________ 

 
 For example, the first row of Table A2 shows the results for 50 legislators in 2 

dimensions with 15 percent voting error (due to rounding, this was either 7 or 8 of the 50 

legislators making voting errors).  The average of the 100 bootstrapped standard errors 

(50 experiments times 2 dimensions) was 0.104 for the 50-50 margin votes (each true roll 

call was 25 Yea and 25 Nay) and 0.177 for the 80-20 margin votes (each true roll call 

was 40 Yea and 10 Nay).  The standard deviations of these two means were 0.029 and 

0.065 respectively.   

 The average standard errors in Table A2 show that lopsided roll calls are less 

precisely estimated than close roll calls, and roll calls with a smaller number of 

legislators the less precisely estimated than roll calls with a larger number.  Neither of 

these findings is a surprise.  The bottom line is that the cutting plane procedure is very 

stable at realistic levels of observations and levels of error. 

Empirical Comparisons With Probit 

Table A3 shows the results of applying Probit and the cutting plane procedure to 

the Spector and Mazzeo (1980) “Grade” data used by Greene (1993, pp.658-659) to 

analyze Manski’s Maximum Score Estimator (Manski, 1975, 1985; Manski and 

Thompson, 1986).  The probit coefficients and their standard errors are identical to those 

reported by Greene (1993, p. 646).  The standardized probit coefficients and the 

estimated normal vector from the cutting plane procedure are very similar.  The standard 

errors for the elements of the normal vector estimated by the cutting plane procedure 

were obtained by a simple bootstrapping analysis.  The Spector and Mazzeo dataset was 

sampled by observation with replacement (that is, the rows of the data matrix were 
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sampled with replacement) to form 100 matrices and the cutting plane procedure was 

applied to each of the 100 matrices.  The standard errors were obtained by computing the 

sum of squared differences between the actual normal vector from the original data and 

the 100 normal vectors from the bootstrap trials, dividing by 100 and taking the square 

root.2  This is the same approach used in the Monte Carlo work reported above. 

__________________ 
 Table A3 about Here    
__________________ 

 
The pattern of “significance” for the three non-parametric cutting plane 

coefficients is the same as that for the Probit coefficients.  Monte-Carlo work with 

artificial data suggests that the cutting plane coefficients will have nearly identical 

patterns of significance (using bootstrapping) with those produced by a Probit analysis 

when the underlying error distribution is symmetric. 

 Table A4 shows a second empirical comparison of the cutting plane procedure 

and Probit analysis.  The sample is 231 Republican members of the House of 

Representatives3 and the dependent variable is whether or not they signed up as co-

sponsors of a minimum wage increase.4  The independent variables are the two 

dimensional W-NOMINATE scores (Poole and Rosenthal, 1997) computed from votes 

taken in 1995 and some characteristics of representatives’ congressional districts (percent 

rural, percent Black, and median family income).  (The independent variables were put in 

standard deviation form to facilitate comparisons.)  The standardized Probit coefficients 

and the cutting plane coefficients are very close – the simple Pearson correlation is .961.  

Substantively, the coefficients in Table A4 indicate that Republican moderates from 

poorer, urban districts support raising the minimum wage.  Once again, the pattern of 



 8

“significance” for the non-parametric cutting plane coefficients is the same as that for the 

Probit coefficients. 

__________________ 
 Table A4 about Here    
__________________ 

 
 

A3. .  Monte-Carlo Studies of the Legislative Procedure With Voting Error 

Recovery of the Legislative Coordinates 

Table A5 is organized in the same fashion as Table A1.  Not surprisingly, as the 

number of cutting planes increases with the error level held fixed, the precision of the 

recovery of the legislators increases dramatically.  Even at the very high error level of 25 

percent, with 500 roll calls in two or three dimensions the recovery of the legislator 

coordinates is very good.   

__________________ 
 Table A5 about Here    
__________________ 

 
 The legislative procedure is very stable.  This is shown by the small standard 

deviations for correct classifications and the r-squares.  In addition, the gap between the 

average worst r-square and the average best r-square for the s dimensions is not very 

large.  For example, for 500 roll calls in 3 dimensions, the average worst r-square 

between the true and reproduced legislator coordinates was .968 and the average best r-

square was .985.  In other words, on average, the three r-squares computed between the 

corresponding three dimensions ranged between .968 and .985. 

 Bootstrapped Standard Errors For the Legislator Coordinates 

 Given the normal vectors, N, the cutpoints, the q mj’s, and legislator i’s votes on 

the q roll calls, ti , standard errors for the estimated legislator coordinates, xi
* , can be 
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obtained via a simple bootstrapping analysis.  Two types of bootstrapping experiments 

are reported below.  In the first, similar to the analysis of the cutting plane procedure 

above, the stability of the legislative procedure is assessed by assuming that N is fixed.  

In this context the rows of N and the corresponding mj’s and elements in ti are sampled 

with replacement.  The resulting standard errors for the entries of X are a useful 

descriptive measure of the stability of the legislative procedure.   

In the second set of experiments, a matrix of roll calls is created and the unfolding 

algorithm is run until convergence to get the estimated legislator coordinates, X*.  Then 

100 matrices are formed from the original roll call matrix by drawing roll calls with 

replacement and the unfolding algorithm is run on all 100 matrices to produce 100 

estimated legislator matrices.  The standard errors for the legislator coordinates are then 

computed from these 100 bootstrapped estimates.  These standard errors are good 

descriptive measures of the stability of the unfolding algorithm as a whole and mimic a 

real world application of the unfolding procedure. 

The bootstrap analysis to assess the stability of the legislative procedure is 

performed in the following manner.  First, the rows of N and the corresponding mj’s and 

elements in ti are sampled with replacement to form 100 matrices (that is, the sampling is 

by roll call cutting plane with replacement).  Second, the legislative procedure is applied 

to each of the 100 matrices.  Finally, the standard errors are obtained by computing the 

sum of squared differences between the actual legislator coordinates from the original 

data, xi
* , and the 100 xi’s from the bootstrap trials, dividing by 100 and taking the square 

root.   
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The bootstrap analysis to assess the stability of the unfolding algorithm as a whole 

is performed in the following manner.  An artificial roll call matrix is created with a 

given level of voting error and average majority margin that closely approximates actual 

congressional roll call data.  The unfolding algorithm is then applied to this matrix to get 

the target legislator configuration, X*.  From the roll call matrix, 100 roll call matrices 

are formed by sampling roll calls with replacement.  The unfolding algorithm is applied 

to each of the 100 roll call matrices and the standard deviation of the 100 estimates for 

each legislator for each dimension was computed.  Each of the 100 estimated 

configurations was rotated using Schonemann’s (1966) method to best fit the target 

configuration, X*, to remove any arbitrary rotation.  (Empirically, the rotation of the 

configurations was extremely small.)  The standard errors are obtained by computing the 

sum of squared differences between the actual legislator coordinates from the original 

data, xi
* , and the 100 xi’s from the bootstrap trials (after rotation), dividing by 100 and 

taking the square root.  

Figure A2 shows the results of these bootstrapping experiments (type 1 and type 

2, respectively) for 100 legislators and 500 roll calls in 2, 3, and 10 dimensions.  The 

classification error introduced was 18% and the average majority margin was 68-32 for 

all the experiments.  Figure A2A shows the results of both types of bootstrapping for 2 

dimensions, figure A2B shows the results for 3 dimensions, and figure A2C 10 

dimensions. 

__________________ 
Figure A2 about Here 
__________________ 
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 For example, in the 2 dimensional experiments, about 12 percent of the 300 (100 

legislators times 3 dimensions) type 1 standard errors and about 3 percent of the type 2 

standard errors were between 0.03 and 0.04.  The distributions of the standard errors for 2 

and 3 dimensions are piled up to the left of the corresponding ones for 10 dimensions.  

This makes sense because the number of legislators and roll calls are held fixed while the 

number of dimensions is increased.  Recall that q roll calls in s dimensions create a 

maximum of ∑
=








s

0k k
q

 regions in the space.  This number explodes as the number of 

dimensions increases so that it is quite likely that in high dimensional spaces there are 

multiple regions close to each other with the same correct classification for a legislator.  

This geometry is almost certainly responsible for the slightly larger standard errors from 

the bootstrapping experiments.  Nevertheless, even in 10 dimensions the bulk of the 

standard errors are reasonably small.  

Figure A3 shows type 2 bootstrapped standard errors for the 98 Senators shown in 

Figure 6.  Because there were only 255 roll calls in the 85th Senate with minority 

percentages of 2.5 percent or better, the standard errors are somewhat larger than those 

shown in Figure A2A.  In addition, the two dimensions were not equally salient as they 

are constrained to be in the Monte Carlo work.  Although the second dimension played a 

significant role during this period – especially on civil rights related issues – the first 

dimension accounts for the bulk of the roll call votes (Poole and Rosenthal, 1997).  

Consequently, the standard errors are much lower on the first dimension.  Eighty of 98 

Senators have standard errors of less than .10.  The standard errors for the second 

dimension are larger reflecting the fact that the bulk of the cutting lines are between 60 

and 120 degrees (see Figure 6).  Even so, 72 of 98 Senators have standard errors of less 
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than .15, which is small relative to the 2-unit diameter of the space.  The standard errors 

tend to be larger for those Senators near the rim of the space. 

__________________ 
Figure A3 about Here 
__________________ 

 
 

A4. .  Monte-Carlo Study of the NonParametric Unfolding Algorithm With Missing 

Data and Voting Error 

 Table A6 shows a set of experiments with and without error at various levels of 

missing data.  Configurations of 100 legislators and 500 roll calls in 2 and 3 dimensions 

were randomly generated in the same fashion as those used in the Monte-Carlo 

experiments shown in Table 4.  Error was introduced into the choices by making them 

probabilistic (see Appendices A2 and A3 above).  An error level of about 20 percent was 

chosen because it is somewhat above the approximate level of error in U.S. congressional 

roll call data.  Matrix entries were randomly removed and the remaining entries were then 

analyzed by the algorithm in one through five dimensions.  The upper part of Table A6 

shows two-dimensional experiments at four different levels of missing data with and 

without error, and the lower part shows three-dimensional experiments.  Each randomly 

produced matrix was analyzed at each level of missing data so that the same 10 matrices 

for two or three dimensions (with varying levels of missing entries) are being averaged in 

each row of the upper or lower parts of the Table. 

__________________ 
 Table A6 about Here    
__________________ 
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The accuracy of the recovery of the legislator configuration is quite good and only 

begins to fall off at 70 percent missing entries.  With perfect data the procedure 

unambiguously finds the true dimensionality.  With error there are clear “elbows” at the 

true dimensionality.  The tendency for the correct classification to increase with the 

percentage of missing data is due to the fact that with more missing data there are fewer 

roll call cutting planes and hence a legislator’s position is not as constrained as it is with 

complete data.  Indeed, the average largest distance to a cutting plane increases with the 

level of missing data.  This tends to increase the correct classification and decrease the 

correlation between the true and reproduced legislator configurations.  In any event, the 

results shown in Table A6 suggest that the algorithm will perform well with real world 

data at realistic levels of missing entries.  In particular, with 20 percent missing data there 

is no appreciable deterioration in performance. 
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Table A1 
Monte-Carlo Tests of Cutting Plane Procedure 

500 Votes With Normal, Uniform, and Logit Error 
(Each Entry Average of 10 Trials, Standard Deviations in Parentheses) 

 
 
 

S 

 
 

P 

 
Average 
Percent 
Error 

 

 
Average 
Majority
 Margin 

Average 
Percent 

Correctly 
Classified 

Obs.a 

Average 
Percent 

Correctly 
Classified

Trueb 

Average 
Fit With 

True Normal 
Vectors 

Allc 

Average 
Fit With 

True Normal
Vectors 

10% Min.d 

 
1 

 
100 

 
24.9 
(0.4) 

 
65.9 
(0.6) 

 
77.9 
(0.2) 

 
91.6 
(0.5) 

 
.840 

(.035) 

 
.894 

(.015) 
 
1 

 
100 

 
15.7 
(2.6) 

 
66.5 
(0.8) 

 
86.5 
(0.6) 

 
94.6 
(0.3) 

 
.906 

(.026) 

 
.939 

(.007) 
 
2 

 
100 

 
25.5 
(0.2) 

 
64.1 
(0.2) 

 
78.8 
(0.3) 

 
90.3 
(0.3) 

 
.951 

(.004) 

 
.952 

(.003) 
 
2 

 
100 

 
15.0 
(0.6) 

 
66.4 
(0.8) 

 
89.7 
(0.5) 

 
94.2 
(0.2) 

 
.979 

(.004) 

 
.986 

(.001) 
 
3 

 
100 

 
25.1 
(0.3) 

 
64.8 
(0.6) 

 
80.5 
(0.4) 

 
88.9 
(0.3) 

 
.913 

(.008) 

 
.918 

(.006) 
 
3 

 
100 

 
14.3 
(0.3) 

 
68.0 
(0.5) 

 
89.8 
(0.2) 

 
93.0 
(0.2) 

 
.954 

(.004) 

 
.969 

(.002) 
 
3 

 
25 

 
14.8 
(0.5) 

 
67.6 
(0.6) 

 
93.4 
(0.6) 

 
88.8 
(0.4) 

 
.890 

(.011) 

 
.909 

(.013) 
 
3 

 
50 

 
14.8 
(0.4) 

 
66.8 
(0.7) 

 
90.8 
(0.4) 

 
91.0 
(0.3) 

 
.934 

(.008) 

 
.952 

(.003) 
 
3 

 
200 

 
14.5 
(0.2) 

 
67.2 
(0.8) 

 
88.3 
(0.2) 

 
94.4 
(0.2) 

 
.970 

(.002) 

 
.980 

(.002) 
 
3 

 
100 

 
15.0e 

(0.4) 

 
66.9 
(0.7) 

 
89.3 
(0.4) 

 
92.4 
(0.2) 

 
.960 

(.004) 

 
.968 

(.002) 
 
3 

 
100 

 
15.4f 

(0.5) 

 
68.2 
(0.5) 

 
88.9 
(0.5) 

 
92.4 
(0.3) 

 
.952 

(.003) 

 
.965 

(.003) 
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a Average correct classification of observed roll call data. 
b Average correct classification of true roll call data. 
c For one dimension, average Spearman correlation between estimated rank order and 

true rank order of midpoints.  For more than one dimension, average cosine between 

estimated and true normal vectors. 
d For one dimension, average Spearman correlation between estimated rank order and 

true rank order of midpoints for roll call with at least 10 percent or better in the minority.  

For more than one dimension, average cosine computed between estimated and true 

normal vectors for roll calls with at least 10 percent or better in the minority. 
e  Uniform distribution error. 
f  Logit distribution error. 
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Table A2 

Monte-Carlo Tests of Cutting Plane Procedure 
Boot-Strapped Standard Errors For Elements of the Normal Vector 

 
Each Entry the Average of 50 experiments 

Each Experiment 100 Bootstrap Trials 
 
 

 
                            True Margin 

 
 
 

S 

 
 

P 

 
Percent 
Error 

50 - 50 
Average 
Standard 

Error 

80 - 20 
Average 
Standard 

Error 

 
2 

 
 50 

 
15 

 
0.104 

(0.029) 

 
0.177 

(0.065) 
 

2 100 15 0.072 
(0.019) 

 

0.106 
(0.040) 

2 500 15 0.036 
(0.007) 

 

0.047 
(0.008) 

 
2  50 25 0.154 

(0.050) 
 

0.221 
(0.102) 

 
2 100 25 0.106 

(0.029) 
0.187 

(0.100) 
 

2 500 25 0.059 
(0.009) 

0.075 
(0.019) 

 
3  50 15 0.137 

(0.046) 
0.179 

(0.066) 
 

3 100 15 0.091 
(0.023) 

 

0.126 
(0.036) 

3 500 15 0.039 
(0.006) 

0.052 
(0.008) 

 
3  50 25 0.194 

(0.062 
0.258 

(0.092) 
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3 100 25 0.143 

(0.036) 
0.199 

(0.078) 
 

3 500 25 0.062 
(0.009) 

 

0.083 
(0.014) 

10 50 15 
 

0.172 
(0.039) 

0.201 
(0.054) 

 
10 100 15 

 
0.104 

(0.023) 
0.122 

(0.026) 
 

10 500 15 

 
0.040 

(0.005) 
0.055 

(0.008) 
 

10 50 25 
 

0.195 
(0.042) 

0.227 
(0.057) 

 
10 100 25 

 
0.134 

(0.027) 
0.170 

(0.035) 
 

10 500 25 
 

0.062 
(0.008) 

0.085 
(0.011) 
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Table A3 
 

Empirical Comparison of Probit and Cutting Plane Procedure 
Spector and Mazzeo “Grade” Data 
(Source:  Green, 1993, p. 639-640) 

 
Dependent Variable = 1 if Examination Grade Improved with New  

Teaching Method for Economics 
 

 
Variable Probit 

Coefficient 
 

Std. Error 
Standardized

Probit 
Coefficientsd 

Cutting Plane 
Coefficients  

Boot-Strapped 
Std. Errore 

Constant 
 
 

-7.452 2.542 --- --- --- 

GPAa 
 
 

1.626 .694 .752 .787 .207 

TUCEb 
 
 

0.052 .084 .024 .001 .032 

PSIc 
 

1.426 .595 .659 .617 .316 

 
 Probit Log Likelihood = -12.819 
 Percent Correctly Classified By Probit = 81.3 (26 of 32) 
 Percent Correctly Classified By Cutting Plane Procedure = 87.5 (28 of 32) 
________________________________________________________________________ 
a  Grade Point Average 
b Score on a pretest that indicates entering knowledge of the material 
c Indicator variable: = 1 if student exposed to new teaching method 
d The sum of the squared coefficients equals 1 
e Based upon 100 trials  
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Table A4 
 

Empirical Comparison of Probit and Cutting Plane Procedure 
22 Republican Defectors on Minimum Wage:  April 1996 

 
Dependent Variable = 1 if Support Raising Minimum Wage; 0 if Oppose 
Independent Variables Expressed in Standard Deviation Form 
Margin  22 - 209 

 
Variable Probit 

Coefficient 
 

Std. Error 
Standardized

Probit 
Coefficientsd 

Cutting Plane 
Coefficients  

Boot-Strapped 
Std. Errore 

Constant 
 
 

1.722 0.186 --- --- --- 

W-NOMa 
1st Dimension 

 

12.211 3.481 .911 .876 0.238 

W-NOMa 
2nd Dimension 

 

0.785 2.951 .059 .266 0.347 

Ruralb 
 
 

4.157 2.163 .310 .338 0.160 

Blackb 
 
 

0.337 1.926 .025 .051 0.151 

Median  
Incomec 

 

3.568 2.484 .266 .212 0.220 

 
 Probit Log Likelihood = -54.101 
 Percent Correctly Classified By Probit = 90.9 (210 of 231) 
 Percent Correctly Classified By Cutting Plane Procedure = 91.8 (212 of 231) 
 Correlation Between Cutting Plane Coefficients and Standardized  
  Probit Coefficients = .961 
________________________________________________________________________ 
a Unadjusted W-NOMINATE scores range from -1.0 to +1.0  
b Unadjusted data expressed as a percentage  
c Unadjusted data expressed in dollars  
d The sum of the squared coefficients equals 1 
e Based upon 100 trials  
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Table A5 

Monte-Carlo Tests of Legislator Procedure 
100 Legislators With Normal, Uniform, and Logit Error 

(Each Entry Average of 10 Trials, Standard Deviations in Parentheses) 
 

 
 

S 

 
 

Q 

 
Average 
Percent 
Error 

 

 
Average 
Majority
 Margin 

Average 
Percent 

Correctly 
Classified 

Obs.a 

Average 
Percent 

Correctly 
Classified

Trueb 

Average 
Worst 
Leg. 

R-Squarec 

Average 
Best 
Leg. 

R-Squared 

 
1 

 
500 

 
25.4 
(0.6) 

 
63.7 
(0.6) 

 
77.8 
(0.6) 

 
91.3 
(0.4) 

 
--- 

 

 
.985 

(.002) 
 
1 

 
500 

 
15.9 
(0.3) 

 
66.9 
(0.6) 

 
86.4 
(0.4) 

 
94.4 
(0.2) 

 
--- 

 

 
.985 

(.012) 
 
2 

 
500 

 
24.4 
(0.7) 

 
64.9 
(0.3) 

 
79.2 
(0.6) 

 
91.3 
(0.2) 

 
.967 

(.016) 

 
.984 

(.006) 
 
2 

 
500 

 
15.2 
(0.3) 

 
68.1 
(0.7) 

 
87.6 
(0.4) 

 
94.2 
(0.2) 

 
.971 

(.013) 

 
.991 

(.003) 
 
3 

 
500 

 
25.5 
(0.2) 

 
65.6 
(0.5) 

 
78.3 
(0.3) 

 
90.1 
(0.3) 

 
.943 

(.016) 

 
.972 

(.008) 
 
3 

 
500 

 
16.2 
(0.3) 

 
67.1 
(0.6) 

 
86.6 
(0.4) 

 
93.4 
(0.2) 

 
.968 

(.012) 

 
.985 

(.003) 
 
3 

 
50 

 
16.2 
(0.2) 

 
68.5 
(2.1) 

 
90.4 
(0.7) 

 
89.6 
(0.9) 

 
.725 

(.052) 

 
.819 

(.018) 
 
3 

 
100 

 
16.1 
(0.4) 

 
67.8 
(1.1) 

 
88.6 
(0.3) 

 
91.2 
(0.4) 

 
.835 

(.016) 

 
.888 

(.018) 
 
3 

 
250 

 
16.1 
(0.4) 

 
66.9 
(0.8) 

 
87.1 
(0.3) 

 
92.7 
(0.3) 

 
.930 

(.016) 

 
.955 

(.008) 
 
3 

 
500 

 
14.8e 

(0.5) 

 
67.1 
(0.7) 

 
88.0 
(0.4) 

 
93.5 
(0.2) 

 
.968 

(.009) 

 
.982 

(.007) 
 
3 

 
500 

 
15.3f 

(0.2) 

 
68.1 
(0.9) 

 
87.4 
(0.3) 

 
93.4 
(0.2) 

 
.968 

(.011) 

 
.986 

(.004) 
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a Average correct classification of observed roll call data. 
b Average correct classification of true roll call data. 
c R-Squares computed between true and reproduced legislator coordinates.  The number 

shown is the average of the worst r-squares across the 10 trials. 
d R-Squares computed between true and reproduced legislator coordinates.  The number 

shown is the average of the best r-squares across the 10 trials. 
e Uniform distribution error. 
f Logit distribution error.  
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Table A6 

Monte-Carlo Tests:  Non-Parametric Unfolding of Binary Choice  
Matrices With Missing Data 

(Each Entry Average of 10 Trials, Standard Deviations in Parentheses) 
2 Dimensions, 100 Legislators, 500 Votes 

 
Percent 
Missing 

Average 
Percent 
Error 

Average 
Majority 
Margin 

Percent 
Correct 
1 Dim. 

Percent 
Correct 
2 Dim. 

Percent 
Correct 
3 Dim. 

Percent 
Correct 
4 Dim 

Percent 
Correct 
5 Dim. 

 
R2 

1st 

 
R2 

2nd 
 

0 
 

0 
 

65.5 
(0.7) 

 
91.4 
(0.9) 

 
99.9 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.982 

(.005) 

 
.948 

(.005) 
 

20 
 

0 
 

65.5 
(0.7) 

 
91.6 
(1.5) 

 
99.9 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.983 

(.005) 

 
.949 

(.009) 
 

50 
 

0 
 

65.9 
(0.8) 

 
91.6 
(0.9) 

 
99.9 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.975 

(.005) 

 
.938 

(.020) 
 

70 
 

0 
 

66.5 
(0.8) 

 
92.1 
(0.7) 

 
99.9 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.964 

(.007) 

 
.920 

(.013) 
 

0 
 

20.3 
(0.6) 

 
64.6 
(0.8) 

 
79.3 
(0.7) 

 
84.0 
(0.4) 

 
85.1 
(0.3) 

 
86.0 
(0.3) 

 
86.6 
(0.3) 

 
.968 

(.007) 

 
.953 

(.004) 
 

20 
 

20.3 
(0.6) 

 
64.8 
(0.8) 

 
79.3 
(0.8) 

 
84.7 
(0.4) 

 
86.0 
(0.3) 

 
86.8 
(0.3) 

 
87.5 
(0.3) 

 
.963 

(.005) 

 
.936 

(.012) 
 

50 
 

20.3 
(0.6) 

 
65.3 
(0.8) 

 
80.5 
(0.5) 

 
85.9 
(0.4) 

 
87.5 
(0.3) 

 
88.7 
(0.4) 

 
89.5 
(0.4) 

 
.949 

(.012) 

 
.925 

(.012) 
 

70 
 

20.3 
(0.6) 

 
66.1 
(0.9) 

 
81.1 
(0.8) 

 
87.6 
(0.5) 

 
89.7 
(0.5) 

 
91.3 
(0.5) 

 
92.8 
(0.5) 

 
.929 

(.009) 

 
.915 

(.012) 
 

3 Dimensions, 100 Legislators, 500 Votes 
 
Percent 
Missing 

Average 
Percent 
Error 

Average 
Majority 
Margin 

Percent 
Correct 
1 Dim. 

Percent 
Correct 
2 Dim. 

Percent 
Correct 
3 Dim. 

Percent 
Correct 
4 Dim 

Percent 
Correct 
5 Dim. 

 
R2 

1st 

 
R2 

2nd 

 
R2 

3rd 
 

0 
 

0 
 

66.7 
(0.7) 

 
85.3 
(0.4) 

 
92.7 
(0.8) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.985 

(.005) 

 
.976 

(.009) 

 
.957 

(.010) 
 

20 
 

0 
 

66.6 
(0.8) 

 
85.5 
(0.5) 

 
92.3 
(0.9) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.981 

(.002) 

 
.976 

(.004) 

 
.958 

(.013) 
 

50 
 

0 
 

67.0 
(0.7) 

 
85.6 
(0.5) 

 
92.9 
(0.9) 

 
99.9 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.962 

(.009) 

 
.946 

(.013) 

 
.924 

(.015) 
 

70 
 

0 
 

68.0 
(0.4) 

 
86.3 
(0.3) 

 
93.4 
(0.8) 

 
99.9 
(0.0) 

 
100.0 
(0.0) 

 
100.0 
(0.0) 

 
.932 

(.012) 

 
.911 

(.019) 

 
.883 

(.022) 
 

0 
 

22.8 
 

61.3 
 

73.8 
 

77.7 
 

81.2 
 

81.9 
 

82.6 
 

.982 
 

.980 
 

.979 
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(0.7) (0.4) (0.6) (0.5) (0.3) (0.3) (0.3) (.007) (.009) (.007) 
 

20 
 

22.8 
(0.6) 

 
61.7 
(0.5) 

 
74.1 
(0.7) 

 
78.3 
(0.5) 

 
81.9 
(0.3) 

 
82.6 
(0.3) 

 
83.3 
(0.2) 

 
.981 

(.007) 

 
.977 

(.007) 

 
.974 

(.011) 
 

50 
 

22.8 
(0.5) 

 
62.4 
(0.5) 

 
74.9 
(0.7) 

 
79.9 
(0.4) 

 
83.4 
(0.3) 

 
84.3 
(0.2) 

 
85.3 
(0.3) 

 
.969 

(.013) 

 
.966 

(.017) 

 
.952 

(.017) 
 

70 
 

22.8 
(0.6) 

 
63.4 
(0.4) 

 
76.4 
(0.7) 

 
82.1 
(0.6) 

 
85.6 
(0.4) 

 
87.1 
(0.3) 

 
88.5 
(0.4) 

 
.947 

(.021) 

 
.938 

(.022) 

 
.908 

(.020) 
 
 

 



 29

 
Appendix Endnotes 

 
 
                                                 
1  The first two dimensions estimated by NOMINATE classify about 85 percent of the roll call choices 
during the post World War II period (Poole and Rosenthal ,1997, ch. 2). 
 
2  Note that in all the cutting plane analyses, the means of the variables in the grade data were subtracted so 
that the sum of the columns of the matrix was zero.  Then the whole matrix was multiplied by a constant to 
scale the matrix so that it was within a hypersphere of radius one.   
 
3  In April, 1996, there were 236 Republicans in the House.  The 5 party switchers – Laughlin (TX), Parker 
(MS), Hayes (LA), Deal (GA), and Tauzin (LA) – were excluded from the analysis producing an n of 231.  
Campbell (R-CA), who won a special election to replace Mineta (D-CA), is included. 
 
4 The source for the co-sponsors is “Who You Calling ‘Moderate?’”, by Bob Balkin, PoliticsUSA, at 
www.politicsusa.com, Wednesday, April 24, 1996. 
 


